Catabolic Signaling Pathways, Atrogenes, and Ubiquitinated Proteins Are Regulated by the Nutritional Status in the Muscle of the Fine Flounder
نویسندگان
چکیده
A description of the intracellular mechanisms that modulate skeletal muscle atrophy in early vertebrates is still lacking. In this context, we used the fine flounder, a unique and intriguing fish model, which exhibits remarkably slow growth due to low production of muscle-derived IGF-I, a key growth factor that has been widely acknowledged to prevent and revert muscle atrophy. Key components of the atrophy system were examined in this species using a detailed time-course of sampling points, including two contrasting nutritional periods. Under basal conditions high amounts of the atrogenes MuRF-1 and Atrogin-1 were observed. During fasting, the activation of the P38/MAPK and Akt/FoxO signaling pathways decreased; whereas, the activation of the IκBα/NFκB pathway increased. These changes in signal transduction activation were concomitant with a strong increase in MuRF-1, Atrogin-1, and protein ubiquitination. During short-term refeeding, the P38/MAPK and Akt/FoxO signaling pathways were strongly activated, whereas the activation of the IκBα/NFκB pathway decreased significantly. The expression of both atrogenes, as well as the ubiquitination of proteins, dropped significantly during the first hour of refeeding, indicating a strong anti-atrophic condition during the onset of refeeding. During long-term refeeding, Akt remained activated at higher than basal levels until the end of refeeding, and Atrogin-1 expression remained significantly lower during this period. This study shows that the components of the atrophy system in skeletal muscle appeared early in the evolution of vertebrates and some mechanisms have been conserved, whereas others have not. These results represent an important achievement for the area of fish muscle physiology, showing an integrative view of the atrophy system in a non-mammalian species and contributing to novel insights on the molecular basis of muscle growth regulation in earlier vertebrates.
منابع مشابه
IGF-I/PI3K/Akt and IGF-I/MAPK/ERK pathways in vivo in skeletal muscle are regulated by nutrition and contribute to somatic growth in the fine flounder.
The insulin-like growth factor-I (IGF-I) is a key regulator of skeletal muscle growth in vertebrates, promoting mitogenic and anabolic effects through the activation of the MAPK/ERK and the PI3K/Akt signaling pathways. Nutrition also affects skeletal muscle growth, activating intracellular pathways and inducing protein synthesis and accretion. Thus, both hormonal and nutritional signaling regul...
متن کاملInteraction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملThe roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk
Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...
متن کاملComparing the effects of endurance and resistance trainings on gene expression involved in protein synthesis and degradation signaling pathways of Wistar rat soleus muscle
Background: Skeletal muscle mass, which is regulated by a balance between muscle protein synthesis and degradation, is an important factor for movement to meet everyday needs, especially in pathological conditions and aging. The purpose of the present investigation was to compare the alterations of the gene expression involved in muscle protein synthesis and degradation signaling pathways induc...
متن کاملActivation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012